Section 2.3 The Basic Limit Laws

(1) The Limit Laws
(2) Examples
(3) Assumptions Matter

Basic Limit Laws:

Assume that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ each exist.
Identity and Constant Laws $\quad \lim _{x \rightarrow c} x=c \quad \lim _{x \rightarrow c} 1=1$
Sum Law
Constant Multiple Law
Product Law

$$
\lim _{x \rightarrow c}(f(x)+g(x))=\left(\hat{\left.\left.\lim _{x \rightarrow c} f(x)\right)+\left(\lim _{x \rightarrow c} g(x)\right), ~\right)}\right.
$$

$$
\lim _{x \rightarrow c}(k f(x))=k\left(\lim _{x \rightarrow c} f(x)\right)
$$

$$
\lim _{x \rightarrow c}(f(x) g(x))=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)
$$

Quotient Law
If $\lim _{x \rightarrow c} g(x) \neq 0$,

$$
\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}
$$

Power Law
If n is an integer,

$$
\lim _{x \rightarrow c}\left(f(x)^{n}\right)=\left(\lim _{x \rightarrow c} f(x)\right)^{n}
$$

(I) $\lim _{x \rightarrow c} x^{3}+4 x^{2}-3$
(II) $\lim _{x \rightarrow c} \frac{x^{4}+x^{2}-1}{x^{2}+5}$
(III) $\lim _{x \rightarrow c} \frac{x^{2}-2 x-15}{x^{2}-9}$

Example IV

$$
\begin{aligned}
& \lim _{x \rightarrow-1} f(x)=3 \\
& \lim _{x \rightarrow 2} f(x)=-1
\end{aligned}
$$

$\lim _{x \rightarrow-1} g(x)=-2$ $\lim _{x \rightarrow 2} g(x)=4$

With the above limit information, evaluate the limits:
(i) $\lim _{x \rightarrow-1}(2 f(x)-3 g(x))$
(ii) $\lim _{x \rightarrow 2} \frac{x \sqrt{g(x)}}{f(x)^{2}}$
(iii) $\lim _{x \rightarrow-1} \frac{g(-2 x)}{x^{2}}$

Assumptions Matter

Every Basic Limit Law rests upon the assumption that the limits exist! If either limit fails to exist, the limit laws cannot be applied:
(Example V) The Product Law cannot be applied to $\lim _{x \rightarrow 0} f(x) g(x)$ if $f(x)=x$ and $g(x)=x^{-1}$.

Assumptions Matter

Every Basic Limit Law rests upon the assumption that the limits exist! If either limit fails to exist, the limit laws cannot be applied. However, the combination of limits may exist anyway!
(Example VI) Give an example where $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ exists, but neither $\lim _{x \rightarrow c} f(x)$ nor $\lim _{x \rightarrow c} g(x)$ exist.

